import pandas as pd import math, json, os import openai, re, ast, requests from fastapi import FastAPI, UploadFile, File, Form from pydantic import BaseModel from fastapi.responses import JSONResponse from datetime import datetime import uvicorn from tqdm import tqdm app = FastAPI() class ClassificationRequest(BaseModel): path: str client_id: str one_key: str name_column: str api_key: str proxy: bool chunk_size: int def save_dict_to_json(dictionary, filename): with open(filename, 'w', encoding='utf-8') as file: json.dump(dictionary, file, ensure_ascii=False, indent=4) def load_dict_from_json(filename): with open(filename, 'r', encoding='utf-8') as file: return json.load(file) def split_dataframe_to_dict(df, chunk_size=100): # 计算需要切割的份数 num_chunks = math.ceil(len(df) / chunk_size) # 用于存储结果的字典 result_dict = {} for i in range(num_chunks): # 切割 DataFrame start = i * chunk_size end = min((i + 1) * chunk_size, len(df)) chunk = df.iloc[start:end] # 将切割后的 DataFrame 转换为字典并存储 result_dict[f'chunk_{i+1}'] = chunk.to_dict(orient='records') return result_dict def extract_list_from_string(input_string): # 使用正则表达式查找列表部分 list_pattern = r'\[.*?\]' match = re.search(list_pattern, input_string, re.DOTALL) if match: list_string = match.group() try: # 使用 ast.literal_eval 安全地解析字符串 result = ast.literal_eval(list_string) # 检查结果是否为列表 if isinstance(result, list): return result else: print("解析结果不是列表") return None except Exception as e: print(f"解析错误: {e}") return None else: print("未找到列表结构") return None def post_openai(messages): Baseurl = "https://fast.bemore.lol" Skey = "sk-dxl4rt2wWswbdrCr1c7b8500B68c43F5B6175b90F7D672C4" payload = json.dumps({ "model": "gpt-4", "messages": messages }) url = Baseurl + "/v1/chat/completions" headers = { 'Accept': 'application/json', 'Authorization': f'Bearer {Skey}', 'User-Agent': 'Apifox/1.0.0 (https://apifox.com)', 'Content-Type': 'application/json' } response = requests.request("POST", url, headers=headers, data=payload) # 解析 JSON 数据为 Python 字典 print(response) data = response.json() # 获取 content 字段的值 content = data['choices'][0]['message']['content'] return content @app.post("/uploadfile/") async def create_upload_file(file: UploadFile = File(...), client_id: str = Form(...)): user_directory = f'./process/{client_id}' if not os.path.exists(user_directory): os.makedirs(user_directory) os.chmod(user_directory, 0o777) # 设置用户目录权限为777 print(user_directory) print(file.filename) file_location = os.path.join(user_directory, file.filename) print(file_location) try: with open(file_location, "wb+") as file_object: file_object.write(file.file.read()) os.chmod(file_location, 0o777) # 设置文件权限为777 return JSONResponse(content={ "message": f"文件 '{file.filename}' 上传成功", "client_id": client_id, "file_path": file_location }, status_code=200) except Exception as e: return JSONResponse(content={"message": f"发生错误: {str(e)}"}, status_code=500) @app.post("/classify/") async def classify_data(request: ClassificationRequest): try: prompt = """提供的数据:{chunk} 返回的数据:""" work_path = f'./process/{request.client_id}' if not os.path.exists(work_path): os.makedirs(work_path, exist_ok=True) timestamp_str = datetime.now().strftime("%Y-%m-%d-%H-%M-%S") df_origin = pd.read_excel(request.path) df_origin['name'] = df_origin[request.name_column] df_origin['classify'] = '' df_use = df_origin[['name', 'classify']] deal_result = split_dataframe_to_dict(df_use, request.chunk_size) # 生成当前时间的时间戳字符串 temp_csv = work_path + '/' + timestamp_str + 'output_temp.csv' final_file_name, final_file_extension = os.path.splitext(os.path.basename(request.path)) # 添加后缀 final_file = final_file_name + '_classify' + final_file_extension # 生成新的文件路径 new_file_path = os.path.join(os.path.dirname(request.path), final_file) if not request.proxy: print(f'用户{request.client_id}正在使用直连的gpt-API') client = openai.OpenAI(api_key=request.api_key, base_url='https://api.openai.com/v1') else: client = openai.OpenAI(api_key=request.api_key, base_url='https://fast.bemore.lol/v1') for name, value in tqdm(deal_result.items(), desc='Processing', unit='item'): try: message = [ {'role':'system', 'content': '你是一个名字判断专家,你需要根据提供的列表中的每一个字典元素的会员姓名,判断其名字分类,分别为3类: 亚裔华人,亚裔非华人, 非亚裔,并将结果填充到会员分类中, 整合之后返回与提供数据一样的格式给我'}, {'role':'user', 'content':prompt.format(chunk=str(value))} ] # result_string = post_openai(message) response = client.chat.completions.create(model='gpt-4',messages=message) result_string = response.choices[0].message.content result = extract_list_from_string(result_string) if result: df_output = pd.DataFrame(result) df_output.to_csv(temp_csv, mode='a', header=True, index=False) else: continue except Exception as e: print(f'{name}出现问题啦, 错误为:{e} 请自行调试') if os.path.exists(temp_csv): df_result = pd.read_csv(temp_csv) df_final = df_origin.merge(df_result, on='name', how='left').drop_duplicates(subset=[request.one_key,'name'], keep='first') df_final.to_excel(new_file_path) return {"message": "分类完成", "output_file": new_file_path} else: return {"message": "文件没能处理成功"} except Exception as e: return {"message": f"处理出现错误: {e}"} if __name__ == "__main__": uvicorn.run(app, host="0.0.0.0", port=8070)