123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161 |
- import mysql.connector
- import pandas as pd
- from openpyxl import Workbook
- from openpyxl.utils.dataframe import dataframe_to_rows
- from openpyxl.utils import get_column_letter
- class DailySalesExporter:
- def __init__(self, db_config):
- self.db_config = db_config
- self.query = """
- SELECT *, IF(temp.`总单数` = 0, 0, temp.`2000+单数` / temp.`总单数`) AS `2000+单数占比`, WEEK(temp.`单据日期`, 1) AS `第几周`
- FROM (
- SELECT
- t1.document_date AS 单据日期,
- SUM(CASE WHEN t1.remaining_amount_after_return <= 999 THEN 1 ELSE 0 END) AS `999及以内单数`,
- SUM(CASE WHEN t1.remaining_amount_after_return > 999 AND t1.remaining_amount_after_return < 2000 THEN 1 ELSE 0 END) AS `1000-1999单数`,
- SUM(CASE WHEN t1.remaining_amount_after_return >= 2000 AND t1.remaining_amount_after_return <= 2899 THEN 1 ELSE 0 END) AS `2000-2899单数`,
- SUM(CASE WHEN t1.remaining_amount_after_return > 2899 AND t1.remaining_amount_after_return <= 3999 THEN 1 ELSE 0 END) AS `2900-3999单数`,
- SUM(CASE WHEN t1.remaining_amount_after_return > 3999 AND t1.remaining_amount_after_return <= 4999 THEN 1 ELSE 0 END) AS `4000-4999单数`,
- SUM(CASE WHEN t1.remaining_amount_after_return > 4999 AND t1.remaining_amount_after_return <= 7999 THEN 1 ELSE 0 END) AS `5000-7999单数`,
- SUM(CASE WHEN t1.remaining_amount_after_return > 7999 THEN 1 ELSE 0 END) AS `8000以上单数`,
- SUM(CASE WHEN t2.refund_meets_big_order != '不符合' THEN 1 ELSE 0 END) AS `满足奖励条件大单数`,
- MAX(t2.big_order_items) AS `最大单件数`,
- MAX(t2.big_order_amount) AS `最大单金额`,
- COUNT(1) AS `总单数`,
- SUM(CASE WHEN t1.remaining_amount_after_return >= 2000 THEN 1 ELSE 0 END) AS `2000+单数`
- FROM sd_sales_order AS t1
- LEFT JOIN sd_big_sales_order AS t2 ON t1.sale_id = t2.sale_id
- GROUP BY t1.document_date
- ) AS temp;
- """
- def export(self, output_file='output_with_weekly_summary.xlsx'):
- global cursor, connection
- try:
- connection = mysql.connector.connect(**self.db_config)
- cursor = connection.cursor()
- cursor.execute(self.query)
- rows = cursor.fetchall()
- columns = [desc[0] for desc in cursor.description]
- finally:
- cursor.close()
- connection.close()
- df = pd.DataFrame(rows, columns=columns)
- df['单据日期'] = pd.to_datetime(df['单据日期'])
- df = df.sort_values('单据日期').reset_index(drop=True)
- weekly_summary = df.groupby('第几周').agg({
- col: 'sum' for col in df.columns if col not in ['单据日期', '2000+单数占比', '第几周']
- }).reset_index()
- weekly_summary['2000+单数'] = pd.to_numeric(weekly_summary['2000+单数'], errors='coerce')
- weekly_summary['总单数'] = pd.to_numeric(weekly_summary['总单数'], errors='coerce')
- weekly_summary['2000+单数占比'] = (weekly_summary['2000+单数'] / weekly_summary['总单数']).fillna(0).round(4)
- new_data = []
- current_week = None
- for _, row in df.iterrows():
- week_group = row['第几周']
- if current_week != week_group and current_week is not None:
- summary_row = weekly_summary[weekly_summary['第几周'] == current_week].iloc[0].to_dict()
- start_date = df[df['第几周'] == current_week]['单据日期'].min().strftime('%m-%d')
- end_date = df[df['第几周'] == current_week]['单据日期'].max().strftime('%m-%d')
- summary_row['单据日期'] = f"{start_date}-{end_date} 汇总"
- new_data.append(summary_row)
- new_data.append(row.to_dict())
- current_week = week_group
- if current_week is not None:
- summary_row = weekly_summary[weekly_summary['第几周'] == current_week].iloc[0].to_dict()
- start_date = df[df['第几周'] == current_week]['单据日期'].min().strftime('%m-%d')
- end_date = df[df['第几周'] == current_week]['单据日期'].max().strftime('%m-%d')
- summary_row['单据日期'] = f"{start_date}-{end_date} 汇总"
- new_data.append(summary_row)
- new_df = pd.DataFrame(new_data).drop(columns=['第几周'])
- wb = Workbook()
- ws = wb.active
- for r in dataframe_to_rows(new_df, index=False, header=True):
- ws.append(r)
- header = {cell.value: cell.column for cell in ws[1]}
- numeric_columns = [
- '999及以内单数', '1000-1999单数', '2000-2899单数', '2900-3999单数',
- '4000-4999单数', '5000-7999单数', '8000以上单数', '满足奖励条件大单数',
- '最大单件数', '最大单金额', '总单数', '2000+单数'
- ]
- for col_name in numeric_columns:
- if col_name in header:
- col_letter = get_column_letter(header[col_name])
- for cell in ws[col_letter]:
- if cell.row == 1:
- continue
- cell.number_format = '0'
- if '2000+单数占比' in header:
- col_letter = get_column_letter(header['2000+单数占比'])
- for cell in ws[col_letter]:
- if cell.row == 1:
- continue
- cell.number_format = '0.00%'
- wb.save(output_file)
- print(f"✅ 数据已成功导出到 {output_file}")
- def export_to_dataframe(self):
- connection = mysql.connector.connect(**self.db_config)
- cursor = connection.cursor()
- try:
- cursor.execute(self.query)
- rows = cursor.fetchall()
- columns = [desc[0] for desc in cursor.description]
- finally:
- cursor.close()
- connection.close()
- df = pd.DataFrame(rows, columns=columns)
- df['单据日期'] = pd.to_datetime(df['单据日期'])
- df = df.sort_values('单据日期').reset_index(drop=True)
- weekly_summary = df.groupby('第几周').agg({
- col: 'sum' for col in df.columns if col not in ['单据日期', '2000+单数占比', '第几周']
- }).reset_index()
- weekly_summary['2000+单数'] = pd.to_numeric(weekly_summary['2000+单数'], errors='coerce')
- weekly_summary['总单数'] = pd.to_numeric(weekly_summary['总单数'], errors='coerce')
- weekly_summary['2000+单数占比'] = (weekly_summary['2000+单数'] / weekly_summary['总单数']).fillna(0).round(4)
- new_data = []
- current_week = None
- for _, row in df.iterrows():
- week_group = row['第几周']
- if current_week != week_group and current_week is not None:
- summary_row = weekly_summary[weekly_summary['第几周'] == current_week].iloc[0].to_dict()
- start_date = df[df['第几周'] == current_week]['单据日期'].min().strftime('%m-%d')
- end_date = df[df['第几周'] == current_week]['单据日期'].max().strftime('%m-%d')
- summary_row['单据日期'] = f"{start_date}-{end_date} 汇总"
- new_data.append(summary_row)
- new_data.append(row.to_dict())
- current_week = week_group
- if current_week is not None:
- summary_row = weekly_summary[weekly_summary['第几周'] == current_week].iloc[0].to_dict()
- start_date = df[df['第几周'] == current_week]['单据日期'].min().strftime('%m-%d')
- end_date = df[df['第几周'] == current_week]['单据日期'].max().strftime('%m-%d')
- summary_row['单据日期'] = f"{start_date}-{end_date} 汇总"
- new_data.append(summary_row)
- new_df = pd.DataFrame(new_data).drop(columns=['第几周'])
- return new_df
|